Optimal packings of superballs.

نویسندگان

  • Y Jiao
  • F H Stillinger
  • S Torquato
چکیده

Dense hard-particle packings are intimately related to the structure of low-temperature phases of matter and are useful models of heterogeneous materials and granular media. Most studies of the densest packings in three dimensions have considered spherical shapes, and it is only more recently that nonspherical shapes (e.g., ellipsoids) have been investigated. Superballs (whose shapes are defined by |x1|2p+|x2|2p+|x3|2por=0.5) with both cubic-like and octahedral-like shapes as well as concave particles (0or=0.5) are most likely the optimal ones. The maximal packing density as a function of p is nonanalytic at the sphere point (p=1) and increases dramatically as p moves away from unity. Two more nontrivial nonanalytic behaviors occur at pc*=1.150 9... and po*=ln 3/ln 4=0.792 4... for "cubic" and "octahedral" superballs, respectively, where different Bravais lattice packings possess the same densities. The packing characteristics determined by the broken rotational symmetry of superballs are similar to but richer than their two-dimensional "superdisk" counterparts [Y. Jiao, Phys. Rev. Lett. 100, 245504 (2008)] and are distinctly different from that of ellipsoid packings. Our candidate optimal superball packings provide a starting point to quantify the equilibrium phase behavior of superball systems, which should deepen our understanding of the statistical thermodynamics of nonspherical-particle systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinctive features arising in maximally random jammed packings of superballs.

Dense random packings of hard particles are useful models of granular media and are closely related to the structure of nonequilibrium low-temperature amorphous phases of matter. Most work has been done for random jammed packings of spheres and it is only recently that corresponding packings of nonspherical particles (e.g., ellipsoids) have received attention. Here we report a study of the maxi...

متن کامل

Dense packings of polyhedra: Platonic and Archimedean solids.

Understanding the nature of dense particle packings is a subject of intense research in the physical, mathematical, and biological sciences. The preponderance of previous work has focused on spherical particles and very little is known about dense polyhedral packings. We formulate the problem of generating dense packings of nonoverlapping, nontiling polyhedra within an adaptive fundamental cell...

متن کامل

Maximally random jammed packings of Platonic solids: hyperuniform long-range correlations and isostaticity.

We generate maximally random jammed (MRJ) packings of the four nontiling Platonic solids (tetrahedra, octahedra, dodecahedra, and icosahedra) using the adaptive-shrinking-cell method [S. Torquato and Y. Jiao, Phys. Rev. E 80, 041104 (2009)]. Such packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The MRJ packing fr...

متن کامل

Jammed Hard-Particle Packings: From Kepler to Bernal and Beyond

Understanding the characteristics of jammed particle packings provides basic insights into the structure and bulk properties of crystals, glasses, and granular media, and into selected aspects of biological systems. This review describes the diversity of jammed configurations attainable by frictionless convex nonoverlapping (hard) particles in Euclidean spaces and for that purpose it stresses i...

متن کامل

Penny-Packings with Minimal Second Moments

We consider the problem of packing n disks of unit diameter in the plane so as to minimize the second moment about their centroid. Our main result is an algorithm which constructs packings that are optimal among hexagonal packings. Using the algorithm, we prove that, except for n = 212, the n-point packings obtained by Graham and Sloane [1] are optimal among hexagonal packings. We also prove a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 79 4 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2009